While broom is useful for summarizing the result of a single analysis in a consistent format, it is really designed for high-throughput applications, where you must combine results from multiple analyses. These could be subgroups of data, analyses using different models, bootstrap replicates, permutations, and so on. In particular, it plays well with the nest/unnest
functions in tidyr
and the map
function in purrr
. First, loading necessary packages and setting some defaults:
library(broom)
library(tibble)
library(ggplot2)
library(dplyr)
library(tidyr)
library(purrr)
theme_set(theme_minimal())
Let’s try this on a simple dataset, the built-in Orange
. We start by coercing Orange
to a tibble
. This gives a nicer print method that will especially useful later on when we start working with list-columns.
data(Orange)
<- as_tibble(Orange)
Orange Orange
## # A tibble: 35 x 3
## Tree age circumference
## <ord> <dbl> <dbl>
## 1 1 118 30
## 2 1 484 58
## 3 1 664 87
## 4 1 1004 115
## 5 1 1231 120
## 6 1 1372 142
## 7 1 1582 145
## 8 2 118 33
## 9 2 484 69
## 10 2 664 111
## # … with 25 more rows
This contains 35 observations of three variables: Tree
, age
, and circumference
. Tree
is a factor with five levels describing five trees. As might be expected, age and circumference are correlated:
cor(Orange$age, Orange$circumference)
## [1] 0.9135189
ggplot(Orange, aes(age, circumference, color = Tree)) +
geom_line()
Suppose you want to test for correlations individually within each tree. You can do this with dplyr’s group_by
:
%>%
Orange group_by(Tree) %>%
summarize(correlation = cor(age, circumference))
## # A tibble: 5 x 2
## Tree correlation
## * <ord> <dbl>
## 1 3 0.988
## 2 1 0.985
## 3 5 0.988
## 4 2 0.987
## 5 4 0.984
(Note that the correlations are much higher than the aggregated one, and furthermore we can now see it is similar across trees).
Suppose that instead of simply estimating a correlation, we want to perform a hypothesis test with cor.test
:
<- cor.test(Orange$age, Orange$circumference)
ct ct
##
## Pearson's product-moment correlation
##
## data: Orange$age and Orange$circumference
## t = 12.9, df = 33, p-value = 1.931e-14
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8342364 0.9557955
## sample estimates:
## cor
## 0.9135189
This contains multiple values we could want in our output. Some are vectors of length 1, such as the p-value and the estimate, and some are longer, such as the confidence interval. We can get this into a nicely organized tibble using the tidy
function:
tidy(ct)
## # A tibble: 1 x 8
## estimate statistic p.value parameter conf.low conf.high method alternative
## <dbl> <dbl> <dbl> <int> <dbl> <dbl> <chr> <chr>
## 1 0.914 12.9 1.93e-14 33 0.834 0.956 Pearson'… two.sided
Often, we want to perform multiple tests or fit multiple models, each on a different part of the data. In this case, we recommend a nest-map-unnest
workflow. For example, suppose we want to perform correlation tests for each different tree. We start by nest
ing our data based on the group of interest:
<- Orange %>%
nested nest(data = -Tree)
Then we run a correlation test for each nested tibble using purrr::map
:
%>%
nested mutate(test = map(data, ~ cor.test(.x$age, .x$circumference)))
## # A tibble: 5 x 3
## Tree data test
## <ord> <list> <list>
## 1 1 <tibble [7 × 2]> <htest>
## 2 2 <tibble [7 × 2]> <htest>
## 3 3 <tibble [7 × 2]> <htest>
## 4 4 <tibble [7 × 2]> <htest>
## 5 5 <tibble [7 × 2]> <htest>
This results in a list-column of S3 objects. We want to tidy each of the objects, which we can also do with map
.
%>%
nested mutate(
test = map(data, ~ cor.test(.x$age, .x$circumference)), # S3 list-col
tidied = map(test, tidy)
)
## # A tibble: 5 x 4
## Tree data test tidied
## <ord> <list> <list> <list>
## 1 1 <tibble [7 × 2]> <htest> <tibble [1 × 8]>
## 2 2 <tibble [7 × 2]> <htest> <tibble [1 × 8]>
## 3 3 <tibble [7 × 2]> <htest> <tibble [1 × 8]>
## 4 4 <tibble [7 × 2]> <htest> <tibble [1 × 8]>
## 5 5 <tibble [7 × 2]> <htest> <tibble [1 × 8]>
Finally, we want to unnest the tidied data frames so we can see the results in a flat tibble. All together, this looks like:
%>%
Orange nest(data = -Tree) %>%
mutate(
test = map(data, ~ cor.test(.x$age, .x$circumference)), # S3 list-col
tidied = map(test, tidy)
%>%
) unnest(tidied)
## # A tibble: 5 x 11
## Tree data test estimate statistic p.value parameter conf.low conf.high
## <ord> <lis> <lis> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
## 1 1 <tib… <hte… 0.985 13.0 4.85e-5 5 0.901 0.998
## 2 2 <tib… <hte… 0.987 13.9 3.43e-5 5 0.914 0.998
## 3 3 <tib… <hte… 0.988 14.4 2.90e-5 5 0.919 0.998
## 4 4 <tib… <hte… 0.984 12.5 5.73e-5 5 0.895 0.998
## 5 5 <tib… <hte… 0.988 14.1 3.18e-5 5 0.916 0.998
## # … with 2 more variables: method <chr>, alternative <chr>
This workflow becomes even more useful when applied to regressions. Untidy output for a regression looks like:
<- lm(age ~ circumference, data = Orange)
lm_fit summary(lm_fit)
##
## Call:
## lm(formula = age ~ circumference, data = Orange)
##
## Residuals:
## Min 1Q Median 3Q Max
## -317.88 -140.90 -17.20 96.54 471.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.6036 78.1406 0.212 0.833
## circumference 7.8160 0.6059 12.900 1.93e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 203.1 on 33 degrees of freedom
## Multiple R-squared: 0.8345, Adjusted R-squared: 0.8295
## F-statistic: 166.4 on 1 and 33 DF, p-value: 1.931e-14
where we tidy these results, we get multiple rows of output for each model:
tidy(lm_fit)
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 16.6 78.1 0.212 8.33e- 1
## 2 circumference 7.82 0.606 12.9 1.93e-14
Now we can handle multiple regressions at once using exactly the same workflow as before:
%>%
Orange nest(data = -Tree) %>%
mutate(
fit = map(data, ~ lm(age ~ circumference, data = .x)),
tidied = map(fit, tidy)
%>%
) unnest(tidied)
## # A tibble: 10 x 8
## Tree data fit term estimate std.error statistic p.value
## <ord> <list> <list> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 <tibble [7 × … <lm> (Intercept) -265. 98.6 -2.68 4.36e-2
## 2 1 <tibble [7 × … <lm> circumfere… 11.9 0.919 13.0 4.85e-5
## 3 2 <tibble [7 × … <lm> (Intercept) -132. 83.1 -1.59 1.72e-1
## 4 2 <tibble [7 × … <lm> circumfere… 7.80 0.560 13.9 3.43e-5
## 5 3 <tibble [7 × … <lm> (Intercept) -210. 85.3 -2.46 5.74e-2
## 6 3 <tibble [7 × … <lm> circumfere… 12.0 0.835 14.4 2.90e-5
## 7 4 <tibble [7 × … <lm> (Intercept) -76.5 88.3 -0.867 4.26e-1
## 8 4 <tibble [7 × … <lm> circumfere… 7.17 0.572 12.5 5.73e-5
## 9 5 <tibble [7 × … <lm> (Intercept) -54.5 76.9 -0.709 5.10e-1
## 10 5 <tibble [7 × … <lm> circumfere… 8.79 0.621 14.1 3.18e-5
You can just as easily use multiple predictors in the regressions, as shown here on the mtcars
dataset. We nest the data into automatic and manual cars (the am
column), then perform the regression within each nested tibble.
data(mtcars)
<- as_tibble(mtcars) # to play nicely with list-cols
mtcars mtcars
## # A tibble: 32 x 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
## # … with 22 more rows
%>%
mtcars nest(data = -am) %>%
mutate(
fit = map(data, ~ lm(wt ~ mpg + qsec + gear, data = .x)), # S3 list-col
tidied = map(fit, tidy)
%>%
) unnest(tidied)
## # A tibble: 8 x 8
## am data fit term estimate std.error statistic p.value
## <dbl> <list> <list> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 <tibble [13 × 10… <lm> (Intercep… 4.28 3.46 1.24 2.47e-1
## 2 1 <tibble [13 × 10… <lm> mpg -0.101 0.0294 -3.43 7.50e-3
## 3 1 <tibble [13 × 10… <lm> qsec 0.0398 0.151 0.264 7.98e-1
## 4 1 <tibble [13 × 10… <lm> gear -0.0229 0.349 -0.0656 9.49e-1
## 5 0 <tibble [19 × 10… <lm> (Intercep… 4.92 1.40 3.52 3.09e-3
## 6 0 <tibble [19 × 10… <lm> mpg -0.192 0.0443 -4.33 5.91e-4
## 7 0 <tibble [19 × 10… <lm> qsec 0.0919 0.0983 0.935 3.65e-1
## 8 0 <tibble [19 × 10… <lm> gear 0.147 0.368 0.398 6.96e-1
What if you want not just the tidy
output, but the augment
and glance
outputs as well, while still performing each regression only once? Since we’re using list-columns, we can just fit the model once and use multiple list-columns to store the tidied, glanced and augmented outputs.
<- mtcars %>%
regressions nest(data = -am) %>%
mutate(
fit = map(data, ~ lm(wt ~ mpg + qsec + gear, data = .x)),
tidied = map(fit, tidy),
glanced = map(fit, glance),
augmented = map(fit, augment)
)
%>%
regressions unnest(tidied)
## # A tibble: 8 x 10
## am data fit term estimate std.error statistic p.value glanced augmented
## <dbl> <lis> <lis> <chr> <dbl> <dbl> <dbl> <dbl> <list> <list>
## 1 1 <tib… <lm> (Int… 4.28 3.46 1.24 2.47e-1 <tibbl… <tibble …
## 2 1 <tib… <lm> mpg -0.101 0.0294 -3.43 7.50e-3 <tibbl… <tibble …
## 3 1 <tib… <lm> qsec 0.0398 0.151 0.264 7.98e-1 <tibbl… <tibble …
## 4 1 <tib… <lm> gear -0.0229 0.349 -0.0656 9.49e-1 <tibbl… <tibble …
## 5 0 <tib… <lm> (Int… 4.92 1.40 3.52 3.09e-3 <tibbl… <tibble …
## 6 0 <tib… <lm> mpg -0.192 0.0443 -4.33 5.91e-4 <tibbl… <tibble …
## 7 0 <tib… <lm> qsec 0.0919 0.0983 0.935 3.65e-1 <tibbl… <tibble …
## 8 0 <tib… <lm> gear 0.147 0.368 0.398 6.96e-1 <tibbl… <tibble …
%>%
regressions unnest(glanced)
## # A tibble: 2 x 17
## am data fit tidied r.squared adj.r.squared sigma statistic p.value df
## <dbl> <lis> <lis> <list> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 <tib… <lm> <tibb… 0.833 0.778 0.291 15.0 7.59e-4 3
## 2 0 <tib… <lm> <tibb… 0.625 0.550 0.522 8.32 1.70e-3 3
## # … with 7 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>, deviance <dbl>,
## # df.residual <int>, nobs <int>, augmented <list>
%>%
regressions unnest(augmented)
## # A tibble: 32 x 15
## am data fit tidied glanced wt mpg qsec gear .fitted .resid
## <dbl> <lis> <lis> <list> <list> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 <tib… <lm> <tibb… <tibbl… 2.62 21 16.5 4 2.73 -0.107
## 2 1 <tib… <lm> <tibb… <tibbl… 2.88 21 17.0 4 2.75 0.126
## 3 1 <tib… <lm> <tibb… <tibbl… 2.32 22.8 18.6 4 2.63 -0.310
## 4 1 <tib… <lm> <tibb… <tibbl… 2.2 32.4 19.5 4 1.70 0.505
## 5 1 <tib… <lm> <tibb… <tibbl… 1.62 30.4 18.5 4 1.86 -0.244
## 6 1 <tib… <lm> <tibb… <tibbl… 1.84 33.9 19.9 4 1.56 0.274
## 7 1 <tib… <lm> <tibb… <tibbl… 1.94 27.3 18.9 4 2.19 -0.253
## 8 1 <tib… <lm> <tibb… <tibbl… 2.14 26 16.7 5 2.21 -0.0683
## 9 1 <tib… <lm> <tibb… <tibbl… 1.51 30.4 16.9 5 1.77 -0.259
## 10 1 <tib… <lm> <tibb… <tibbl… 3.17 15.8 14.5 5 3.15 0.0193
## # … with 22 more rows, and 4 more variables: .hat <dbl>, .sigma <dbl>,
## # .cooksd <dbl>, .std.resid <dbl>
By combining the estimates and p-values across all groups into the same tidy data frame (instead of a list of output model objects), a new class of analyses and visualizations becomes straightforward. This includes
In each of these cases, we can easily filter, facet, or distinguish based on the term
column. In short, this makes the tools of tidy data analysis available for the results of data analysis and models, not just the inputs.