dplyr verbs are particularly powerful when you apply them to grouped data frames (grouped_df
objects). This vignette shows you:
How to group, inspect, and ungroup with group_by()
and friends.
How individual dplyr verbs changes their behaviour when applied to grouped data frame.
How to access data about the “current” group from within a verb.
We’ll start by loading dplyr:
group_by()
The most important grouping verb is group_by()
: it takes a data frame and one or more variables to group by:
You can see the grouping when you print the data:
by_species
#> # A tibble: 87 x 14
#> # Groups: species [38]
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> 4 Dart… 202 136 none white yellow 41.9 male mascu…
#> # … with 83 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
by_sex_gender
#> # A tibble: 87 x 14
#> # Groups: sex, gender [6]
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> 4 Dart… 202 136 none white yellow 41.9 male mascu…
#> # … with 83 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
Or use tally()
to count the number of rows in each group. The sort
argument is useful if you want to see the largest groups up front.
by_species %>% tally()
#> # A tibble: 38 x 2
#> species n
#> <chr> <int>
#> 1 Aleena 1
#> 2 Besalisk 1
#> 3 Cerean 1
#> 4 Chagrian 1
#> # … with 34 more rows
by_sex_gender %>% tally(sort = TRUE)
#> # A tibble: 6 x 3
#> # Groups: sex [5]
#> sex gender n
#> <chr> <chr> <int>
#> 1 male masculine 60
#> 2 female feminine 16
#> 3 none masculine 5
#> 4 <NA> <NA> 4
#> # … with 2 more rows
As well as grouping by existing variables, you can group by any function of existing variables. This is equivalent to performing a mutate()
before the group_by()
:
You can see underlying group data with group_keys()
. It has one row for each group and one column for each grouping variable:
by_species %>% group_keys()
#> # A tibble: 38 x 1
#> species
#> <chr>
#> 1 Aleena
#> 2 Besalisk
#> 3 Cerean
#> 4 Chagrian
#> # … with 34 more rows
by_sex_gender %>% group_keys()
#> # A tibble: 6 x 2
#> sex gender
#> <chr> <chr>
#> 1 female feminine
#> 2 hermaphroditic masculine
#> 3 male masculine
#> 4 none feminine
#> # … with 2 more rows
You can see which group each row belongs to with group_indices()
:
by_species %>% group_indices()
#> [1] 11 6 6 11 11 11 11 6 11 11 11 11 34 11 24 12 11 11 36 11 11 6 31 11 11
#> [26] 18 11 11 8 26 11 21 11 10 10 10 38 30 7 38 11 37 32 32 33 35 29 11 3 20
#> [51] 37 27 13 23 16 4 11 11 11 9 17 17 11 11 11 11 5 2 15 15 11 1 6 25 19
#> [76] 28 14 34 11 38 22 11 11 11 6 38 11
And which rows each group contains with group_rows()
:
by_species %>% group_rows() %>% head()
#> <list_of<integer>[6]>
#> [[1]]
#> [1] 72
#>
#> [[2]]
#> [1] 68
#>
#> [[3]]
#> [1] 49
#>
#> [[4]]
#> [1] 56
#>
#> [[5]]
#> [1] 67
#>
#> [[6]]
#> [1] 2 3 8 22 73 85
Use group_vars()
if you just want the names of the grouping variables:
If you apply group_by()
to an already grouped dataset, will overwrite the existing grouping variables. For example, the following code groups by homeworld
instead of species
:
by_species %>%
group_by(homeworld) %>%
tally()
#> # A tibble: 49 x 2
#> homeworld n
#> <chr> <int>
#> 1 Alderaan 3
#> 2 Aleen Minor 1
#> 3 Bespin 1
#> 4 Bestine IV 1
#> # … with 45 more rows
To augment the grouping, using .add = TRUE
1. For example, the following code groups by species and homeworld:
To remove all grouping variables, use ungroup()
:
You can also choose to selectively ungroup by listing the variables you want to remove:
The following sections describe how grouping affects the main dplyr verbs.
summarise()
summarise()
computes a summary for each group. This means that it starts from group_keys()
, adding summary variables to the right hand side:
by_species %>%
summarise(
n = n(),
height = mean(height, na.rm = TRUE)
)
#> # A tibble: 38 x 3
#> species n height
#> <chr> <int> <dbl>
#> 1 Aleena 1 79
#> 2 Besalisk 1 198
#> 3 Cerean 1 198
#> 4 Chagrian 1 196
#> # … with 34 more rows
The .groups=
argument controls the grouping structure of the output. The historical behaviour of removing the right hand side grouping variable corresponds to .groups = "drop_last"
without a message or .groups = NULL
with a message (the default).
by_sex_gender %>%
summarise(n = n()) %>%
group_vars()
#> `summarise()` has grouped output by 'sex'. You can override using the `.groups` argument.
#> [1] "sex"
by_sex_gender %>%
summarise(n = n(), .groups = "drop_last") %>%
group_vars()
#> [1] "sex"
Since version 1.0.0 the groups may also be kept (.groups = "keep"
) or dropped (.groups = "drop"
).
by_sex_gender %>%
summarise(n = n(), .groups = "keep") %>%
group_vars()
#> [1] "sex" "gender"
by_sex_gender %>%
summarise(n = n(), .groups = "drop") %>%
group_vars()
#> character(0)
When the output no longer have grouping variables, it becomes ungrouped (i.e. a regular tibble).
select()
, rename()
, and relocate()
rename()
and relocate()
behave identically with grouped and ungrouped data because they only affect the name or position of existing columns. Grouped select()
is almost identical to ungrouped select, except that it always includes the grouping variables:
by_species %>% select(mass)
#> Adding missing grouping variables: `species`
#> # A tibble: 87 x 2
#> # Groups: species [38]
#> species mass
#> <chr> <dbl>
#> 1 Human 77
#> 2 Droid 75
#> 3 Droid 32
#> 4 Human 136
#> # … with 83 more rows
If you don’t want the grouping variables, you’ll have to first ungroup()
. (This design is possibly a mistake, but we’re stuck with it for now.)
arrange()
Grouped arrange()
is the same as ungrouped arrange()
, unless you set .by_group = TRUE
, in which case it will order first by the grouping variables.
by_species %>%
arrange(desc(mass)) %>%
relocate(species, mass)
#> # A tibble: 87 x 14
#> # Groups: species [38]
#> species mass name height hair_color skin_color eye_color birth_year sex
#> <chr> <dbl> <chr> <int> <chr> <chr> <chr> <dbl> <chr>
#> 1 Hutt 1358 Jabb… 175 <NA> green-tan… orange 600 herm…
#> 2 Kaleesh 159 Grie… 216 none brown, wh… green, y… NA male
#> 3 Droid 140 IG-88 200 none metal red 15 none
#> 4 Human 136 Dart… 202 none white yellow 41.9 male
#> # … with 83 more rows, and 5 more variables: gender <chr>, homeworld <chr>,
#> # films <list>, vehicles <list>, starships <list>
by_species %>%
arrange(desc(mass), .by_group = TRUE) %>%
relocate(species, mass)
#> # A tibble: 87 x 14
#> # Groups: species [38]
#> species mass name height hair_color skin_color eye_color birth_year sex
#> <chr> <dbl> <chr> <int> <chr> <chr> <chr> <dbl> <chr>
#> 1 Aleena 15 Ratt… 79 none grey, blue unknown NA male
#> 2 Besali… 102 Dext… 198 none brown yellow NA male
#> 3 Cerean 82 Ki-A… 198 white pale yellow 92 male
#> 4 Chagri… NA Mas … 196 none blue blue NA male
#> # … with 83 more rows, and 5 more variables: gender <chr>, homeworld <chr>,
#> # films <list>, vehicles <list>, starships <list>
Note that second example is sorted by species
(from the group_by()
statement) and then by mass
(within species).
mutate()
and transmute()
In simple cases with vectorised functions, grouped and ungrouped mutate()
give the same results. They differ when used with summary functions:
# Subtract off global mean
starwars %>%
select(name, homeworld, mass) %>%
mutate(standard_mass = mass - mean(mass, na.rm = TRUE))
#> # A tibble: 87 x 4
#> name homeworld mass standard_mass
#> <chr> <chr> <dbl> <dbl>
#> 1 Luke Skywalker Tatooine 77 -20.3
#> 2 C-3PO Tatooine 75 -22.3
#> 3 R2-D2 Naboo 32 -65.3
#> 4 Darth Vader Tatooine 136 38.7
#> # … with 83 more rows
# Subtract off homeworld mean
starwars %>%
select(name, homeworld, mass) %>%
group_by(homeworld) %>%
mutate(standard_mass = mass - mean(mass, na.rm = TRUE))
#> # A tibble: 87 x 4
#> # Groups: homeworld [49]
#> name homeworld mass standard_mass
#> <chr> <chr> <dbl> <dbl>
#> 1 Luke Skywalker Tatooine 77 -8.38
#> 2 C-3PO Tatooine 75 -10.4
#> 3 R2-D2 Naboo 32 -32.2
#> 4 Darth Vader Tatooine 136 50.6
#> # … with 83 more rows
Or with window functions like min_rank()
:
# Overall rank
starwars %>%
select(name, homeworld, height) %>%
mutate(rank = min_rank(height))
#> # A tibble: 87 x 4
#> name homeworld height rank
#> <chr> <chr> <int> <int>
#> 1 Luke Skywalker Tatooine 172 29
#> 2 C-3PO Tatooine 167 21
#> 3 R2-D2 Naboo 96 5
#> 4 Darth Vader Tatooine 202 72
#> # … with 83 more rows
# Rank per homeworld
starwars %>%
select(name, homeworld, height) %>%
group_by(homeworld) %>%
mutate(rank = min_rank(height))
#> # A tibble: 87 x 4
#> # Groups: homeworld [49]
#> name homeworld height rank
#> <chr> <chr> <int> <int>
#> 1 Luke Skywalker Tatooine 172 5
#> 2 C-3PO Tatooine 167 4
#> 3 R2-D2 Naboo 96 1
#> 4 Darth Vader Tatooine 202 10
#> # … with 83 more rows
filter()
A grouped filter()
effectively does a mutate()
to generate a logical variable, and then only keeps the rows where the variable is TRUE
. This means that grouped filters can be used with summary functions. For example, we can find the tallest character of each species:
by_species %>%
select(name, species, height) %>%
filter(height == max(height))
#> # A tibble: 35 x 3
#> # Groups: species [35]
#> name species height
#> <chr> <chr> <int>
#> 1 Greedo Rodian 173
#> 2 Jabba Desilijic Tiure Hutt 175
#> 3 Yoda Yoda's species 66
#> 4 Bossk Trandoshan 190
#> # … with 31 more rows
You can also use filter()
to remove entire groups. For example, the following code eliminates all groups that only have a single member:
slice()
and friendsslice()
and friends (slice_head()
, slice_tail()
, slice_sample()
, slice_min()
and slice_max()
) select rows within a group. For example, we can select the first observation within each species:
by_species %>%
relocate(species) %>%
slice(1)
#> # A tibble: 38 x 14
#> # Groups: species [38]
#> species name height mass hair_color skin_color eye_color birth_year sex
#> <chr> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
#> 1 Aleena Ratt… 79 15 none grey, blue unknown NA male
#> 2 Besali… Dext… 198 102 none brown yellow NA male
#> 3 Cerean Ki-A… 198 82 white pale yellow 92 male
#> 4 Chagri… Mas … 196 NA none blue blue NA male
#> # … with 34 more rows, and 5 more variables: gender <chr>, homeworld <chr>,
#> # films <list>, vehicles <list>, starships <list>
Similarly, we can use slice_min()
to select the smallest n
values of a variable:
by_species %>%
filter(!is.na(height)) %>%
slice_min(height, n = 2)
#> # A tibble: 48 x 14
#> # Groups: species [38]
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Ratt… 79 15 none grey, blue unknown NA male mascu…
#> 2 Dext… 198 102 none brown yellow NA male mascu…
#> 3 Ki-A… 198 82 white pale yellow 92 male mascu…
#> 4 Mas … 196 NA none blue blue NA male mascu…
#> # … with 44 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
Inside dplyr verbs, you can access various properties of the “current” group using a family of functions with the cur_
prefix. These functions are typically needed for everyday usage of dplyr, but can be useful because they allow you to free from some of the typical constraints of dplyr verbs.
cur_data()
cur_data()
returns the current group, excluding grouping variables. It’s useful to feed to functions that take a whole data frame. For example, the following code fits a linear model of mass ~ height
to each species:
by_species %>%
filter(n() > 1) %>%
mutate(mod = list(lm(mass ~ height, data = cur_data())))
#> # A tibble: 58 x 15
#> # Groups: species [9]
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Luke… 172 77 blond fair blue 19 male mascu…
#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
#> 4 Dart… 202 136 none white yellow 41.9 male mascu…
#> # … with 54 more rows, and 6 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>, mod <list>
cur_group()
and cur_group_id()
cur_group_id()
gives a unique numeric identifier for the current group. This is sometimes useful if you want to index into an external data structure.
by_species %>%
arrange(species) %>%
select(name, species, homeworld) %>%
mutate(id = cur_group_id())
#> # A tibble: 87 x 4
#> # Groups: species [38]
#> name species homeworld id
#> <chr> <chr> <chr> <int>
#> 1 Ratts Tyerell Aleena Aleen Minor 1
#> 2 Dexter Jettster Besalisk Ojom 2
#> 3 Ki-Adi-Mundi Cerean Cerea 3
#> 4 Mas Amedda Chagrian Champala 4
#> # … with 83 more rows
Note that the argument changed from add = TRUE
to .add = TRUE
in dplyr 1.0.0.↩︎